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What is a debris flow?

Debris flows

Debris flow is composed by a mixture of solid particles mixture with fluid (water,
loose mud, . . . ) that rush down a slope (mountainside).

Hazard: Some of them are very fast and produce serious damages in nearby
settlements.
I A good approximation of the debris deposit and its evolution could help to
mitigate related damages through risk evaluation.

Debris flow in Illgraben (Switzerland), 2016 Debris flow in Brasil, 2011
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Debris flows modelling

Important ingredients to take into account

3D behavior
vertical estructure of the flow

Different size particles
debris flow is made up of sand-size or larger particles

Two-phase nature: solid-fluide
in debris flows particles move independently within the flow I two velocities
are required

Rheology
viscous or inertial grain-grain interactions: Coulomb, Bingham, dilatant, . . .



Debris flows modelling

Rheology

Example for dry granular: µ(I)-rheology,

Jop, P., Forterre, Y., Pouliquen, O. A constitutive law for dense granular flows. Nature 441
(7094), 2006.

Granular viscosity η =
µ(I)p
γ̇

where

µ(I) = µs +
µd − µs

1 +
I0

I

; I =
dgγ̇√
p/ρg

I is the inertial number (depending on the flow regime) and γ̇ strain rate.
◦When used with incompressible Navier-Stokes equations. . .
I Well posed just for intermediate values of I (dense inertial regime)
I Ill posed for very low or very high values of I (quasi-static or collisional regime)

T. Barker, D.G. Schaeffer, P. Bohorquez, J.M.N.T. Gray, Well-posed and ill-posed
behaviour of the mu(I)-rheology for granular flow, J. Fluid Mech. 779, 2015.

I Viscosity is not defined when γ̇ = 0.

The easiest way to solve it: regularization η =
µ(I)p√
γ̇2 + δ2



Debris flows modelling

Rheology

For fluidized granular

M. Trulsson, B. Andreotti, and P. Claudin. Transition from the viscous to inertial regime
in dense suspensions. Phys. Rev. Lett. 109, 118305, 2012.

The inertial number depends on the flow regime:

inertial: Ii =
dgγ̇√
pg/ρg

; viscous: Iv =
ηf γ̇

pg
.

The proposal:
Ĩ = Iv + αI2

i (α a constant)

and
µ(I) = µc +

µF − µc

1 +
√

I0/Ĩ



Debris flows modelling

Important ingredients to take into account

3D behavior
vertical estructure of the flow

Different size particles
debris flow is made up of sand-size or larger particles

Two-phase nature: solid-fluide
in debris flows particles move independently within the flow I two velocities
are required

Rheology
viscous or inertial grain-grain interactions: Coulomb, Bingham, dilatant, . . .

Dilatancy
affects the dynamics of the debris flows and it is related to the pore fluid
pressure



Debris flows modelling

Dilatancy

ϕ: solid volume fraction with critical state ϕeq = ϕeq(p) (not constant)

When deformed (γ̇ 6= 0)

ϕ < ϕeq (loose) ϕ > ϕeq (dense)
H H

Granular medium contracts Granular medium dilates
H H

Fluid is expelled Fluid is sucked
H H

Pore pressure increases Pore pressure decreases
H H

model pressure



Debris flows modelling

Important ingredients to take into account

3D behavior
vertical estructure of the flow

Different size particles
debris flow is made up of sand-size or larger particles

Two-phase nature: solid-fluide
in debris flows particles move independently within the flow I two velocities
are required

Rheology
viscous or inertial grain-grain interactions: Coulomb, Bingham, dilatant, . . .

Dilatancy
affects the dynamics of the debris flows and it is related to the pore fluid
pressure

Bottom variation

It is hard to tackle all items!



Debris flows modelling

Common simplifications in mathematical models

3D resolution Depth-averaged models

multi-species model One single particle sort

proper two-phase model Mixture theory: one velocity

complex rheology Simple or no viscous effects

dilatancy law related to rheology No dilatancy effects

bottom variation Local coordinates

Good mathematical properties for the model to be physically relevant

Dissipative energy balance.

Mass and momentum conservation.
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Debris flows models

How is it tackled in the literature?

3D resolution Depth-averaged models

multi-species model One single particle sort

proper two-phase model Mixture theory: one velocity

complex rheology Mohr-Coulomb friction theory

dilatancy law related to rheology No dilatancy effects

bottom variation Local coordinates



Debris flows models

How is it tackled in the literature?

Mixture theory
Iverson (1997) proposed a model to study shallow partially fluidized avalanches, a
mixture of a granular material and a fluid.

R.M. Iverson. The physics of debris flows. Rev. Geophys., 35:245-296, 1997.

Assumptions:
I one velocity for the mixture (no relative motion)
I rheology: viscosity and Coulomb friction theory
I no dilatancy

Ingredients:
I stress tensors are defined as contributions from each phase
I a pore pressure advection-diffusion equation is added based on experimental

measurements

∂th + ∂x(hu) = 0

ρ(∂t(hu) + ∂x(hu2)) = ρgh− h∂xpbed − sgn(u)(ρgh− pbed) tan δ
−νfµγ̇ − hkact/pass∂x(ρgh− pbed)

∂tpbed + u∂xpbed = D(∂2
z p)bed



Debris flows models

Mixture theory
I they add dilatancy effects in 2014

R. M. Iverson and D. L. George. A depth-averaged debris-flow model that includes
the effects of evolving dilatancy. I. Physical basis. Proc. R. Soc. A, 470, 2014.

I An evolution equation for the fluid pore pressure is established using an
empirical dilatancy law and a Darcy law.

Pore pressure: pf = pH + pE

∇ · v = γ̇ tanψ − α∂t(σ − pf )

(1− ϕ)(u− v) = − κ
ηf
∂xpE

◦ ψ: dilatancy angle depending on ϕ



Debris flows models

Two-phase theory
Based on the two-phase (solid-fluid) theory, debris flows are usually described by the
conservation of mass and momentum for each phase.

T.B. Anderson, R. Jackson. A fluid mechanical description of fluidized beds. Ind. Eng.
Chem. Fundam. 6, 1967.

∂t(ρsϕ) +∇ · (ρsϕv) = 0
∂t(ρf (1− ϕ)) +∇ · (ρf (1− ϕ)u) = 0
ρsϕ(∂tv + (v · ∇)v) = −∇ · Ts + f0 + ρsϕg
ρf (1− ϕ)(∂tu + (u · ∇)u) = −∇pf − f0 + ρf (1− ϕ)g

Buoyancy and drag frictional force between phases:

f0 = −ϕ∇pf + Fric

In 1D this system has 4 equations and 5 unknowns: solid volume fraction, pressures
and velocities for both phases.
I An additional equation is necessary to close the system.



Debris flows models

Two-phase theory
Pitman and Le (2005) and Pelanti et al. (2008)

E.B. Pitman, L. Le. A two-fluid model for avalanche and debris flows. Phil. Trans. R. Soc.
A 363, 2005.

M. Pelanti, F. Bouchut, A. Mangeney. A Roe-type scheme for two-phase shallow granular
flows over variable topography. M2AN 42, 2008.
Assumptions:
I rheology: Coulomb friction theory
I no dilatancy
I two boundary conditions are imposed at the free surface: ps = pf = 0⇒

overdeterminated problem at the free surface

Results:
I no closure equation to Jackson’s model
I no energy balance



Debris flows models

Two-phase theory
Our first contribution. . .

F. Bouchut, E.D. Fernández-Nieto, A. Mangeney, G. Narbona. A two-phase shallow
debris flow model with energy balance. ESAIM: Mathematical Modelling and Numerical
Analysis, vol. 49, 2014

Assumptions:
I rheology: Coulomb friction theory
I no dilatancy
I Closure equation for solid incompressibility: ∇ · v = 0
I Only one boundary condition is imposed on the free surface:

(ps + pf )Nx = 0

Results:
I well-posed initial governing system
I dissipative energy balance
I An extra unknown is proposed (pf |bed), that is the Lagrange multiplier associated to

the closure



Debris flows models

The model:

◦Mass equations
∂t(hϕ) + ∂x(hϕv) = 0
∂t(h(1− ϕ)) + ∂x(h(1− ϕ)u) = 0

◦Momentum equations:

ρsϕ(∂tv + v∂xv) = (1− ϕ)∂x(pf )bed − (1− ϕ)ρf g cos θ∂xh
−ϕρsg∂x(b + h)− 1

2 (ρs − ρf )gh cos θ∂xϕ
−ϕρsg sin θ + β(u− v)− sign(v) tan δϕ(ρs − ρf )g cos θ

ρf (1− ϕ)(∂tu + u∂xu) = −(1− ϕ)∂x(pf )bed − (1− ϕ)ρf g cos θ∂xb
−(1− ϕ)ρf g sin θ − β(u− v)

◦ Closure equation:
∂x(h(1− ϕ)(u− v)) = 0



Debris flows models

Two-phase theory
Pailha and Pouliquen (2009)

M. Pailha, O. Pouliquen: A two-phase flow description of the initiation of underwater
granular avalanches. J. Fluid Mech. vol. 633, 2009.

I rheology: Coulomb friction
theory

I only for immersed granular flows



Debris flows models

Two-phase theory
Pailha and Pouliquen (2009)

M. Pailha, O. Pouliquen: A two-phase flow description of the initiation of underwater
granular avalanches. J. Fluid Mech. vol. 633, 2009.

I only for immersed granular flows

I Closure equation related to dilatancy: ∇ · v = γ̇ tanψ

◦ ψ: dilatancy angle depending on ϕ
◦ linearization: tanψ = K(ϕ− ϕeq)

S. Roux and F. Radjai, Texture-dependent rigid plastic behavior. In Proc. of Physics
of Dry Granular Media 1997.

if ϕ < ϕeq: compression if ϕ > ϕeq: dilation

∇ · v < 0 ∇ · v > 0



Debris flows models

Two-phase theory
Our second contribution. . .

Bouchut, F., Fernández-Nieto, E. D., Mangeney, A., and Narbona-Reina, G. A two-phase
two-layer model for fluidized granular flows with dilatancy effects, J. FLUID MECH., 801,
2016.

I Closure equation related to dilatancy: ∇ · v = γ̇ tanψ = Kγ̇(ϕ− ϕeq) ≡ Φ

dilatancy scheme



Debris flows models

Two-phase theory
Our second contribution. . .

Bouchut, F., Fernández-Nieto, E. D., Mangeney, A., and Narbona-Reina, G. A two-phase
two-layer model for fluidized granular flows with dilatancy effects, J. FLUID MECH., 801,
2016.

I Closure equation related to dilatancy: ∇ · v = γ̇ tanψ = Kγ̇(ϕ− ϕeq) ≡ Φ

I we add a thin only-fluid layer on the top

I two-phase two-layer model: boundary conditions at the interface!



Debris flows models

Boundary conditions at the interface

A kinematic condition for the solid phase,

Ñt + v · ÑX = 0.

(where we denote by Ñ = (Ñt, ÑX) a time-space upward normal to the interface).

A Navier fluid friction condition(Tfm + Tf

2
ÑX

)
τ

= −ki(uf − um)τ .

where ki ≥ 0 is a friction coefficient.

Energy balance through the interface ( ps = 0).

TsÑX =

(
ρf

2

(
(um − uf ) ·

ÑX

|ÑX|

)2

+

(
(TfmÑX) · ÑX

|ÑX|2
− pfm

)
ϕ∗

1− ϕ∗

)
ÑX.



Debris flows models

Boundary conditions at the interface

Additional jump relations have to be prescribed.
Rankine-Hugoniot conditions for the exchange rate of fluid phase.

Ñt + uf · ÑX = (1− ϕ∗)(Ñt + um · ÑX) ≡ Vf ,

where:
ϕ∗ is the value of the solid volume fraction at the interface.

The term Vf defines the fluid mass that is transferred from the mixture to the
fluid-only layer.
◦ Vf < 0 means that the fluid is transferred from the fluid-only region to the mixture
region.



Debris flows models

Asymptotic hypothesis (ε = H/L� 1)
The drag term is defined by

f = β(um − v); β = (1− ϕ)2 ηf

κ
,

where ηf is the dynamic viscosity of the fluid and κ is the hydraulic permeability

We shall consider two possible sets of assumptions.

1 The drag term is strong: β ∼ ε−1

Since the drag force β̃(um − v) has to balance gravity terms, it necessarily
remains bounded. This implies that

ux
m − vx = O(ε).

2 The drag term is moderate: β = O(1)

In this case one has just ux
m − vx = O(1).



Debris flows models

I Fluid and solid pressures:

pf = ρf g cos θ(b + hm + hf − z) + pe
f ;

ps = ϕ(ρg − ρf )g cos θ(b + hm − z)− pe
f ; pe

f =
β

1− ϕ

∫ b+hm

z
(uz

m − vz)dz

We have thus to evaluate uz
m − vz up to O(ε2) errors.

Using the closure equation (∇ · v = Φ), mass equations and boundary conditions:

uz
m − vz = (ux

m − vx)∂xb−
z− b
1− ϕ

(
Φ +∇x ·

(
(1− ϕ)(ux

m − vx)
))

+ O(ε3).



Debris flows models

I Fluid and solid pressures:

In the model: (pe
fm)|b, pe

fm

1 β = O(ε−1)

(pe
fm)|b = −

β̄

(1− ϕ)2

h2
m

2
Φ +O(ε2), pe

fm = −
β̄

(1− ϕ)2

h2
m

3
Φ + O(ε2).

2 β = O(1)

(pe
fm)|b =

β̄

1− ϕ

(
hm(ux

m−vx)∂xb−
h2

m

2(1− ϕ)

(
Φ+∂x

(
(1−ϕ)(ux

m−vx)
)))

+O(ε3),

pe
fm =

β̄

1− ϕ

(
hm

2
(ux

m−vx)∂xb−
h2

m

3(1− ϕ)

(
Φ+∂x

(
(1−ϕ)(ux

m−vx)
)))

+O(ε3).



Debris flows models

The model:
◦Mass equations

∂t(hmϕ) + ∂x(hmϕv) = 0
∂t(hm(1− ϕ)) + ∂x(hm(1− ϕ)u) = −Vf

∂t(hf ) + ∂x(hf uf ) = Vf

◦Momentum equations:

ρsϕ(∂tv + v∂xv) = (1− ϕ)∂x(pfm)bed − ϕg cos θ(ρs∂x(b + hm) + ρf∂xhf )
− 1

2 (ρs − ρf )gh cos θ∂xϕ
−ϕρsg sin θ + β(u− v)− sign(v) tan δeff

1
hm

(ϕ(ρs − ρf )g cos θhm − (pfm)bed)+

ρf (1− ϕ)(∂tu + u∂xu) = −(1− ϕ)∂x(pfm)bed − (1− ϕ)ρf g cos θ∂x(b + hm + hf )

−(1− ϕ)ρf g sin θ − β(u− v)− 1
hm

(
( 1

2ρfVf − ki)(uf − u) + kbu)

ρf (∂tuf + u∂xu) = −ρf g cos θ∂x(b + hm + hf )− ρf g sin θ − 1
hf

(
( 1

2ρfVf + ki)(uf − u))

◦ Closure equation:
∂tϕ+ v∂xϕ = −ϕΦ



Debris flows models

if ϕ < ϕeq: compression if ϕ > ϕeq: dilation

∇ · v < 0 ∇ · v > 0

I p̄fm = ρf g cos θ(b + hm + hf ) + p̄e
fm; pe

fm = − β̄

(1− ϕ)2

h2
m

3
Kγ̇(ϕ− ϕeq)

dilatancy scheme

I Transference fluide:

Vf = −hmΦ− ∂x((1− ϕ)hm(u− v))

I Impact of the dilatancy angle on the Coulomb friction force:

Txz
s = − tan(δ + ψ︸ ︷︷ ︸

δeff

)sign(v) ps|bed

ps|bed = ϕ(ρs − ρf )ghm cos θ − (pe
f )bed; (pe

f )bed = − β

(1− ϕ)2

h2
m

2
Φ
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Inmersed non-uniform test. Comparison with experimental data

We perform the tests of the collapse of a granular column in a viscous liquid
that is experimentally investigated in

L. Rondon, O. Pouliquen and P. Aussillous, Granular collapse in a fluid: Role of the
initial volume fraction, Physics of Fluids, 23, 073301, 2011

This experiment corresponds to a one-dimensional dam-break with an initial
rectangular mixture mass of height Hi and width Li that is at rest with a volume
fraction ϕi.

The experiment exhibits results for a loose and a dense initial packing
configurations characterized by the data (ϕi = 0.55, Li = 6 cm, Hi = 4.8 cm)
and (ϕi = 0.6, Li = 6 cm, Hi = 4.2 cm) respectively.

ρs = 2500 kg m−3 d = 225µm, ρf = 1000 kg m−3 and η = 12× 10−3 Pa.s.

Bouchut, F., Fernández-Nieto, E. D., Koné, E. H., Mangeney, A., and Narbona-Reina, G.
EPJ Web of Conferences 140, 09039, Powders and Grains, 2017



Inmersed non-uniform test. Comparison with experimental data
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[middle] and hydrostatic [bottom] pressures). left: dense initial packing (ϕi = 0.6, Li = 6 cm,
Hi = 4.2 cm); right: loose initial packing (ϕi = 0.55, Li = 6 cm, Hi = 4.8 cm)



Inmersed non-uniform test. Comparison with experimental data
0 5 10 15 20 25

0

1

2

3

4

5
Experiment loose profiles (times are every 0.66s)

0 5 10 15 20 25
0

1

2

3

4

5

     Simulation (loose packing - non hydrostatic) at                   
   time t = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5,                 
    5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 11, 12s                   

longitudinal location x(cm)
                           

0 5 10 15 20 25
0

1

2

3

4

5

Simulation (loose packing - hydrostatic) at                
time t = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,         
0.4, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 10, 20, 30, 40s

0 2 4 6 8 10 12 14
0

1

2

3

4

5
Experiment dense profiles (times are every 3s)

0 2 4 6 8 10 12 14
0

1

2

3

4

5

              Simulation (dense packing - non hydrostatic) at                                   
              time t = 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30s                                  

longitudinal location x(cm)
                           

0 2 4 6 8 10 12 14
0

1

2

3

4

5

                  Simulation (dense packing - hydrostatic) at                                
                 time t = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,                                
                0.35, 0.4, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5, 6s                            

Figure: Granular mass profiles from experiments [top] and simulations (non hydrostatic
[middle] and hydrostatic [bottom] pressures). left: dense initial packing (ϕi = 0.6, Li = 6 cm,
Hi = 4.2 cm); right: loose initial packing (ϕi = 0.55, Li = 6 cm, Hi = 4.8 cm)



Inmersed non-uniform test. Comparison with experimental data

Figure: Time evolution of the front position for both initial packing from experiments (dense -•-
and loose -◦-) and simulations (non hydrostatic [dense –, loose –] and hydrostatic [dense −−,
loose −−] pressures)



Inmersed non-uniform test. Comparison with experimental data

Figure: Time evolution of the pore pressure below the column from experiments (dense • and
loose ◦) at x = 2 cm and simulations at x = 2 cm (black), x = 3 cm (blue), x = 4 cm (green)
and x = 5 cm (red). Solid lines: dense initial packing (ϕi = 0.6, Li = 6 cm, Hi = 4.2 cm);
dashed lines: loose initial packing (ϕi = 0.55, Li = 6 cm, Hi = 4.8 cm)
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