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Question: Generation and absorption of water waves in wave tanks

Control theory for the water-wave equations

The aim of control theory is to study the possibility of forcing a system into a
particular state by means of an appropriate control function.



There are many results for equations describing water waves :
e Benjamin-Ono, KdV, Saint-Venant;
see works by Cerpa, Crépeau, Coron, Dubois, Glass, Guerrero, Laurent, Linares,
Ortega, Petit, Rosier, Rouchon, Russell, Zhang....
Here we consider the incompressible Euler equation with free surface.
Main differences :

e the equation is quasi-linear instead of semi-linear,

e the domain has a free boundary and the problem is non local.

Non perturbative problem — we need a very robust method.
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EXACT CONTROLLABILITY, STABILIZATION AND PERTURBATIONS
FOR DISTRIBUTED SYSTEMS *

J. L. LIONSt



The multiplier method



To find conformal transformations, Riemann studied the Laplace equation
Au=0 inQ, ulon = f.

For any function v satisfying v|gq = f, the Green's identity implies that:

Ozi/Q(Au)(ufv)dz:f/QVu~V(ufv)dx

1/2 1/2
Vul> do = / Vu-Vude < (/ |Vu|2dx> </ |V112d:c) ,
Q Q o Q

hence
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2 2
IVullZe < [[Voll2.

Reduce the existence theory to a minimization problem.



The general principle is to use the Energy method. This is the key to prove the
existence/uniqueness of solutions: Riesz-Fréchet or Lax—Milgram theorems allow
to consider equation with variable coefficients

div(A(z)Vu) = 0.
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Well chosen multipliers allow to prove qualitative properties of the solutions.
One key example : the Caccioppoli inequality, using the multiplier xy?u for some
X with compact support.

Used by De Giorgi to prove that weak solutions are always Hélder continuous.

Much more subtle then the Schauder’s theory which is a perturbative analysis.



Two other fundamental multipliers:

The Pohozaev identity states that

/Au(%u+x~Vu)dx:f/ |Vu|® dz.

Applications: Virial identities, non-existence of stationary waves...

Rellich identity: multiply Au=0 by x - Vu in a Lipschitz domain  C R2:
/(x 1) ((Onu)? — Vrul® )do + / 2(0pu)(z - Vru)do = 0.
r r
Useful if z-n >0 on I': star shaped domain.

Application: Dirichlet problem for boundary data in L2.



The energy method is used to prove the existence of solutions to evolution
equations (Hille—Yosida, Leray). Multipliers give here also qualitative properties.
Consider the nonlinear Klein-Gordon equation:

O*u— Au+u+ut =0, r € R3,

Introduce the local energy

1 2 1 U5
E(u;Q,t) = / —(Opu)® + |Vul* + -mu® + — ) da.
o (2 i 2 5 )
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T
Thm. (Morawetz, 1968) / E(u;Q,t)dt < E(u; R3,0).
0

The basic identityT that is used is
2rY(x. Vu+u) (uy— Au+ Q' (w)) = 2(r—(x. Vu+u) w),
+div{rY(—uix—2(x. Vu) Vu + | Vu|2x — 2uVu — r—2u2x + 2Q)}
—2r73(x. V)2 + 2r1| Vu |2 + 2r (@' — 2Q)

with Q(u) = Imu?+ P(u)
and || = r.



J.-L. Lions" multiplier method

Consider the 1D wave eq with Dirichlet boundary condition:
Otu—02u=0, wu(t,0)=u(t,1)=0.
Multiply the equation by z0,u and integrate by parts in space and time:
T 1
/ (Opu(t,1))*dt = 2/ (Opu) (z0zu) dac / [(Opu)? + (Oyu)?] dz dt
0 0

where S = (0,7) x (0,1), so

/T(azu(t, 1))?dt > (T —2)E where E = /1 [(0yu)® + (0,u)?] (0, z) da.
0 0

GCC: If one observes at x = 1 during a time T > 2, then one necessarily sees
the wave; generalized by Rauch—Taylor and Bardos—Lebeau—Rauch.



For simplicity: we consider only 2D water waves.

The fluid domain Q has a free surface. At time t >0,
Q) ={(z,y) € [0, L] xR : ~h <y <n(tz)},

where 7 is an unknown.




Incompressible liquid in a domain Q with a free surface. At time ¢t >0,

Qt) = {(.y) € [0,L] xR : —=h <y <n(t,a)}.

The equations are

Ov+v-Vo+V(P+gy)=0 inQ

dive =0 in €
v-n=0 on the bottom and walls
on=+1+n2v-n on the free surface

P—P., = kO, (%) on the free surface,

V14 n?

g gravity, P pressure, P,.,; external pressure, x surface tension.

We assume that x = 1.



[From the Transactions of the Cambridge Philosophical Society,
Vol. viiL p. 441.]

ON THE THEORY OF OSCILLATORY WAVES.

[Read March 1, 1847.]

p=gpy— pdt {(d—‘i’) (—)}...........(1);

T b 3.

I +d A —0........................(-),

do _ » .

7 =0, when y=h.ocervninnnnnn, 3);
d”+d¢ YO0 L e g ) el T

dz dx ™ dy dy



Consider a potential flow (irrotationnal) so that v = V¢ where ¢: Q — R solves
A¢p =0, 8t¢+%|v¢|2+P+gy:O

Then ¢ which is fully determined by (¢, x) := é(t, z,n(t, z)) .

Thm (Zakharov 1968). One has

on oM onp  O0H

at*@a atffﬂfpemt

where H is the energy:

1 2 g 2 772
szf// v, ddm—i—f/ dx+n/7xdaz.
5 Q| L0 dy 5 [ TRy

STABILITY OF PERIODIC WAVES OF FINITE AMPLITUDE ON THE SURFACE OF A DEEP FLUID
V. E. Zakharov

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskeoi Fiziki, Vol, 9, No, 2, pp, 86-04, 1968

variables. By introducing canonical variables, we can consider the
problem of the stability of surface waves as part of the more general
problem of nonlinear waves in media with dispersion 3, 4]. The re-
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Theorem (A, Baldi and Han-Kwan). Given
-atime T >0,

- an initial state (7;n,¥in) and a final state (Nfinai, Yinai) . small enough and
smooth enough,

- a domain w = (a,b),
there is P.,:(t,z) supported in [0,7] X w such that the unique solution with
initial data (777 ¢) = (nzna¢zn) satisfies (777w)|t:T = (nfinalawfinal) .

Hui Zhu extended this result to 3D water waves.
Based on the HUM method introduced by J. L. Lions.



After wave generation, wave absorption is the most important mechanism in a
wave tank.

One wants to study the propagation in unbounded domains (open sea).
But numerical or experimental studies requires to work in a bounded domain.

—> Need to damp outgoing waves in an absorbing zone surrounding the
boundaries.

T. Alazard (ENS Paris-Saclay) J.-L. Lions and water waves LJLL 2019 16 / 26



A B cC D

2800 4000 1000 200

)., 1deg

5000

3250 E

! 6000

Experimental wave absorbers are passive absorbers: they consist of a beach with a
mild slope.

When arriving to the artificial beach: steepening of the forward face of waves and
then overturning dissipates energy.
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Stabilization

Classical numerical absorbers in numerical wave tanks: Absorption of water waves

in sponge boundary layer near x = L, by means of an external counteracting
pressure produced by blowing above the free surface.




Denote by 7(t) the energy of the fluid at time ¢:

H(t) =

[NJRS]

potential energy kinetic energy
Goal : find P.,; such that

(¢) one has supp Pey+(t,-) C [L —9,L];

(#i) M decays exponentially to 0.

T. Alazard (ENS Paris-Saclay) J.-L. Lions and water waves LJLL 2019

L L
1
/n2dx+n/ (\/1+n§fl)dx+§// Ve8| dy dz.
0 0 Q(t)

18 / 26



Denote by 7(t) the energy of the fluid at time ¢:

H(t) =

[NJRS]

L L
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potential energy kinetic energy

Goal : find P.,; such that
(¢) one has supp Pey+(t,-) C [L —9,L];
(#i) M decays exponentially to 0.

But WW might blow up in finite time.... Here exponential decay means the
following: find P,,; such that

C
H(T) < ZH(0)
7uTy;9Hm) = H@T)<<C> #H(0).
T T
N et
damping for T' > C exponential decay
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First question: how to force the energy to decay ?

Hamiltonian damping: since

o SH o 6H

5_@’ a—_%_ ext
wehave SHOp oM v P
" "

T 2RI R e = — [ D, da

dt [6n8t+6¢ 875} v /8t e

d
If P, =x0m with x >0, then di: <0.

This choice is widespread : Cao—Beck—Schultz, Clément, Grilli, Bonnefoy,
Ducrozet, Baker—-Meiron—Orszag, ...
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Theorem

Assume that
Popi(t, ) = x(2)0m.

i) There exist two positive constants 0, C', depending explicitely on g, k, L, such
that, if

[l <9,

and if the solution exists on the time interval [0,T], then

mﬂg%mw

i1) There exists a constant c, such that, if

Imoll gr7/2 + 1ol s <,

then the solution exists and is O(e) on a time interval of size ¢, /e .




Damping (decreasing energy) is easy but stabilization (exp decay to 0) is more
difficult (since the equation is quasi-linear and nonlocal).

Our goal is to find P+ such that (i) supp Peyt(t,-) C [L —6,L] and
T
(11) H is decreasing and (4i7) / H(t)dt < CH(0).
0

Then .
H(T) < %/ H(t)dt < %7—[(0).
0

damping for T > C

/0 T"H(t) dt.

First problem: compute
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Lemma (An exact identity)
Consider m € C*°([0, L]) such that m(0) = m(L) =0. Set

1 1—mg o ) My
¢ =0(mn) — g0+ —5—n, p=(m w)nz+(4+ 2)77

Then, for smooth enough solutions of the gravity water-wave equations, defined for

te[0,7],
%/()Tﬂ(t)dt+Q://Pezt(jdxdt—/ﬁpdx‘:
//< )wz) G(n)yp dz dt
s
where

T oL T (t,L)
h L n
Q:/ / <§+g) ¢i(t,x,fh)dxdt+§/ / éu(t, L,y) dy dt.
0 0 0 —h




First tool: Morawetz-Lions multiplier method used as follows.

Set
n(t, T)
/ / =(t, z,y) dy da.

Then q
In fact

L n(tfz)

M :/ I(t,r)dxr with I(t,) :/ ¢z (t,z,y) dy.

0 —h

Then
oI + 0,5 =0,

with

S(t,x) = /_Z(P—I-(Zsi)dy

Multiply by m and integrate by parts (exploiting P > 0).



Second tool: a Pohozaev identity.

Next, we split

/ (Gn))mdy da = / (Gn)d)ed da + / (G)e)(m — 2)0y) da.

We have a Pohozaev identity for the Dirichlet to Neumann operator:

/(871(?)(3:(9,01/)) do =T+ /(77 — Z1z) ((bi - ¢12/ +2¢z %m) | y=n dx

where ' = T'(t) is a positive term given by

2 L n(t,L) 9
/¢ h)dz + 2/ L (6 Lyy) dy.
—h



Third tool: a Rellich identity.

All the nonlinear terms are of the form:

/f’ (67 — 0% + 202 dynz) | P
The energy controls [[ |V, ,¢[*dydz, not [ |V, ,¢[? ’y:n de.

We use the Rellich type identity:
[r(@-d+20.0m) |, //p 62 6, dyda

/P¢ ly=—n dz,

ay (p(bz - p(bi) + 20, (p¢z¢y) = 20, Pz Py

which relies on

Thank you!
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