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Question: Generation and absorption of water waves in wave tanks

Control theory for the water-wave equations

The aim of control theory is to study the possibility of forcing a system into a
particular state by means of an appropriate control function.



There are many results for equations describing water waves :
• Benjamin-Ono, KdV, Saint-Venant;

see works by Cerpa, Crépeau, Coron, Dubois, Glass, Guerrero, Laurent, Linares,
Ortega, Petit, Rosier, Rouchon, Russell, Zhang....

Here we consider the incompressible Euler equation with free surface.

Main differences :
• the equation is quasi-linear instead of semi-linear,
• the domain has a free boundary and the problem is non local.

Non perturbative problem −→ we need a very robust method.
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The multiplier method



To find conformal transformations, Riemann studied the Laplace equation

∆u = 0 in Ω, u|∂Ω = f.

For any function v satisfying v|∂Ω = f , the Green’s identity implies that:

0 =

∫
Ω

(∆u)(u− v) dx = −
∫

Ω

∇u · ∇(u− v) dx

so ∫
Ω

|∇u|2 dx =

∫
Ω

∇u · ∇v dx ≤
(∫

Ω

|∇u|2 dx

)1/2(∫
Ω

|∇v|2 dx

)1/2

,

hence
‖∇u‖2L2 ≤ ‖∇v‖2L2 .

Reduce the existence theory to a minimization problem.



The general principle is to use the Energy method. This is the key to prove the
existence/uniqueness of solutions: Riesz-Fréchet or Lax–Milgram theorems allow
to consider equation with variable coefficients

div(A(x)∇u) = 0.

Well chosen multipliers allow to prove qualitative properties of the solutions.
One key example : the Caccioppoli inequality, using the multiplier χ2u for some
χ with compact support.

Used by De Giorgi to prove that weak solutions are always Hölder continuous.

Much more subtle then the Schauder’s theory which is a perturbative analysis.
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Two other fundamental multipliers:

The Pohozaev identity states that∫
Rn

∆u
(n

2
u+ x · ∇u

)
dx = −

∫
Rn

|∇u|2 dx.

Applications: Virial identities, non-existence of stationary waves...

Rellich identity: multiply ∆u = 0 by x · ∇u in a Lipschitz domain Ω ⊂ R2 :∫
Γ

(x · n)
(
(∂nu)2 − |∇Γu|2

)
dσ +

∫
Γ

2(∂nu)(x · ∇Γu)dσ = 0.

Useful if x · n > 0 on Γ : star shaped domain.

Application: Dirichlet problem for boundary data in L2 .



The energy method is used to prove the existence of solutions to evolution
equations (Hille–Yosida, Leray). Multipliers give here also qualitative properties.
Consider the nonlinear Klein-Gordon equation:

∂2
t u−∆u+ u+ u4 = 0, x ∈ R3.

Introduce the local energy

E(u; Ω, t) =

∫
Ω

(1

2
(∂tu)2 + |∇u|2 +

1

2
mu2 +

u5

5

)
dx.

Thm. (Morawetz, 1968)
∫ T

0

E(u; Ω, t) dt . E(u;R3, 0) .
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J.-L. Lions’ multiplier method

Consider the 1D wave eq with Dirichlet boundary condition:

∂2
t u− ∂2

xu = 0, u(t, 0) = u(t, 1) = 0.

Multiply the equation by x∂xu and integrate by parts in space and time:∫ T

0

(∂xu(t, 1))2 dt = 2

∫ 1

0

(∂tu)(x∂xu) dx
T

0
+

∫∫
S

[
(∂tu)2 + (∂xu)2

]
dx dt

where S = (0, T )× (0, 1) , so∫ T

0

(∂xu(t, 1))2 dt ≥ (T − 2)E where E =

∫ 1

0

[
(∂tu)2 + (∂xu)2

]
(0, x) dx.

GCC: If one observes at x = 1 during a time T ≥ 2 , then one necessarily sees
the wave; generalized by Rauch–Taylor and Bardos–Lebeau–Rauch.



The equations

For simplicity: we consider only 2D water waves.

The fluid domain Ω has a free surface. At time t ≥ 0 ,

Ω(t) = { (x, y) ∈ [0, L]× R : −h < y < η(t, x) },

where η is an unknown.

y

x0 L

0

−h

Ω(t)



Incompressible liquid in a domain Ω with a free surface. At time t ≥ 0 ,

Ω(t) = { (x, y) ∈ [0, L]× R : −h < y < η(t, x) }.

The equations are

∂tv + v · ∇v +∇(P + gy) = 0 in Ω

div v = 0 in Ω

v · n = 0 on the bottom and walls

∂tη =
√

1 + η2
x v · n on the free surface

P − Pext = κ∂x

(
ηx√

1 + η2
x

)
on the free surface,

g gravity, P pressure, Pext external pressure, κ surface tension.

We assume that κ = 1 .





Consider a potential flow (irrotationnal) so that v = ∇φ where φ : Ω→ R solves

∆φ = 0, ∂tφ+
1

2
|∇φ|2 + P + gy = 0

Then φ which is fully determined by ψ(t, x) := φ(t, x, η(t, x)) .

Thm (Zakharov 1968). One has

∂η

∂t
=
δH
δψ

,
∂ψ

∂t
= −δH

δη
− Pext

where H is the energy:

H :=
1

2

∫∫
Ω

|∇x,yφ|2 dy dx+
g

2

∫
η2 dx+ κ

∫
η2
x

1 +
√

1 + η2
x

dx.



Pionneering works:

Zakharov, Nalimov, Yoshihara, Craig

see also:
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Theorem (A, Baldi and Han-Kwan). Given
- a time T > 0 ,
- an initial state (ηin, ψin) and a final state (ηfinal, ψfinal) , small enough and
smooth enough,
- a domain ω = (a, b) ,
there is Pext(t, x) supported in [0, T ]× ω such that the unique solution with
initial data (η, ψ) = (ηin, ψin) satisfies (η, ψ)|t=T = (ηfinal, ψfinal) .

Hui Zhu extended this result to 3D water waves.
Based on the HUM method introduced by J. L. Lions.
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After wave generation, wave absorption is the most important mechanism in a
wave tank.

One wants to study the propagation in unbounded domains (open sea).

But numerical or experimental studies requires to work in a bounded domain.

–> Need to damp outgoing waves in an absorbing zone surrounding the
boundaries.
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Experimental wave absorbers are passive absorbers: they consist of a beach with a
mild slope.

When arriving to the artificial beach: steepening of the forward face of waves and
then overturning dissipates energy.
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Stabilization

Classical numerical absorbers in numerical wave tanks: Absorption of water waves
in sponge boundary layer near x = L , by means of an external counteracting
pressure produced by blowing above the free surface.

Pext

Ω(t)

y

x
L− δ L0

0

−h



Denote by H(t) the energy of the fluid at time t :

H(t) =
g

2

∫ L

0

η2 dx+ κ

∫ L

0

(√
1 + η2

x − 1
)

dx︸ ︷︷ ︸
potential energy

+
1

2

∫∫
Ω(t)

|∇x,yφ|2 dy dx︸ ︷︷ ︸
kinetic energy

.

Goal : find Pext such that
(i) one has suppPext(t, ·) ⊂ [L− δ, L] ;
(ii) H decays exponentially to 0 .

But WW might blow up in finite time.... Here exponential decay means the
following: find Pext such that

H(T ) ≤ C

T
H(0).

H(T ) ≤ C

T
H(0)︸ ︷︷ ︸

damping for T > C

⇒ H(nT ) ≤
(
C

T

)n
H(0)︸ ︷︷ ︸

exponential decay

.
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First question: how to force the energy to decay ?

Hamiltonian damping: since

∂η

∂t
=
δH
δψ

,
∂ψ

∂t
= −δH

δη
− Pext

we have
dH
dt

=

∫ [
δH
δη

∂η

∂t
+
δH
δψ

∂ψ

∂t

]
dx = −

∫
∂η

∂t
Pext dx.

If Pext = χ∂tη with χ ≥ 0 , then
dH
dt
≤ 0.

This choice is widespread : Cao–Beck–Schultz, Clément, Grilli, Bonnefoy,
Ducrozet, Baker–Meiron–Orszag,...
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Theorem
Assume that

Pext(t, x) = χ(x)∂tη.

i) There exist two positive constants δ, C , depending explicitely on g, κ, L , such
that, if

‖η‖W 2,∞ ≤ δ,

and if the solution exists on the time interval [0, T ] , then

H(T ) ≤ C

T
H(0).

ii) There exists a constant c∗ such that, if

‖η0‖H7/2 + ‖ψ0‖H3 ≤ ε,

then the solution exists and is O(ε) on a time interval of size c∗/ε .



Damping (decreasing energy) is easy but stabilization (exp decay to 0 ) is more
difficult (since the equation is quasi-linear and nonlocal).

Our goal is to find Pext such that (i) suppPext(t, ·) ⊂ [L− δ, L] and

(ii) H is decreasing and (iii)

∫ T

0

H(t) dt ≤ CH(0).

Then

H(T ) ≤ 1

T

∫ T

0

H(t) dt ≤ C

T
H(0)︸ ︷︷ ︸

damping for T > C

.

First problem: compute ∫ T

0

H(t) dt.
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Lemma (An exact identity)
Consider m ∈ C∞([0, L]) such that m(0) = m(L) = 0 . Set

ζ = ∂x(mη)−
1

4
η +

1−mx

2
η, ρ = (m− x)ηx +

(
5

4
+
mx

2

)
η.

Then, for smooth enough solutions of the gravity water-wave equations, defined for
t ∈ [0, T ] ,

1

2

∫ T

0

H(t) dt+Q =

∫∫
Pext ζ dxdt−

∫
ζψ dx

T
0

+

∫∫ (
1−mx

2
ψ + (x−m)ψx

)
G(η)ψ dx dt

+

∫∫∫
ρx φx φy dy dx dt,

where

Q =

∫ T

0

∫ L

0

(
h

2
+
ρ

2

)
φ2
x(t, x,−h) dx dt+

L

2

∫ T

0

∫ η(t,L)

−h
φ2
y(t, L, y) dy dt.



First tool: Morawetz-Lions multiplier method used as follows.

Set

M(t) =

∫ L

0

∫ η(t,x)

−h
φx(t, x, y) dy dx.

Then
d

dt
M = 0.

In fact

M =

∫ L

0

I(t, x) dx with I(t, x) =

∫ η(t,x)

−h
φx(t, x, y) dy.

Then
∂tI + ∂xS = 0,

with
S(t, x) :=

∫ η

−h
(P + φ2

x) dy.

Multiply by m and integrate by parts (exploiting P ≥ 0 ).



Second tool: a Pohozaev identity.

Next, we split∫
(G(η)ψ)m∂xψ dx =

∫
(G(η)ψ)x∂xψ dx+

∫
(G(η)ψ)(m− x)∂xψ dx.

We have a Pohozaev identity for the Dirichlet to Neumann operator:∫
(∂nφ)(x∂xψ) dσ = Γ +

∫
(η − xηx)

(
φ2
x − φ2

y + 2φx φyηx
)

y=η
dx

where Γ = Γ(t) is a positive term given by

Γ(t) =
h

2

∫
φ2
x(t, x,−h) dx+

L

2

∫ η(t,L)

−h
φ2
y(t, L, y) dy.



Third tool: a Rellich identity.

All the nonlinear terms are of the form:∫
ρ
(
φ2
x − φ2

y + 2φx φyηx
)

y=η
dx.

The energy controls
∫∫
|∇x,yφ|2 dy dx , not

∫
|∇x,yφ|2


y=η

dx .

We use the Rellich type identity:∫
ρ
(
φ2
x − φ2

y + 2φx φyηx
)

y=η
dx = −

∫∫
ρx φx φy dy dx

+
1

2

∫
ρφ2

x|y=−h dx,

which relies on

∂y
(
ρφ2

y − ρφ2
x

)
+ 2∂x

(
ρφxφy

)
= 2ρxφxφy.

Thank you!
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